21 research outputs found

    Shipbuilding 4.0 Index Approaching Supply Chain

    Get PDF
    The shipbuilding industry shows a special interest in adapting to the changes proposed by the industry 4.0. This article bets on the development of an index that indicates the current situation considering that supply chain is a key factor in any type of change, and at the same time it serves as a control tool in the implementation of improvements. The proposed indices provide a first definition of the paradigm or paradigms that best fit the supply chain in order to improve its sustainability and a second definition, regarding the key enabling technologies for Industry 4.0. The values obtained put shipbuilding on the road to industry 4.0 while suggesting categorized planning of technologies

    Study of the Tool Wear Process in the Dry Turning of Al–Cu Alloy

    Get PDF
    Light alloy machining is a widely implemented process that is usually used in the presence of cutting fluids to reduce wear and increase tool life. The use of coolants during machining presents negative environmental impacts, which has increased interest in reducing and even eliminating their use. In order to obtain ecofriendly machining processes, it will be necessary to suppress the use of cutting fluids, in a trend called “dry machining”. This fact forces machines to work under aggressive cutting conditions, producing adhesion wear that a ects the integrity of the parts’ surfaces. This study describes cutting tool wear mechanisms in machining of UNS A92024 samples under dry cutting conditions. Energy dispersive spectroscopy (EDS) analysis shows the di erent compositions of the adhered layers. Roughness is also positively a ected by the change of the cutting geometry produced in the tool

    Approach of the naval industry towards industry 4.0

    Get PDF
    One of the most relevant industrial sectors worldwide is the naval sector, being involved in multiple commercial activities. According to data from UNCTAD (United Nations Conference on Trade and Development) [1], it is important to have a large enough naval fleet to meet maritime needs. This includes the shipbuilding sector, which is responsible for the manufacture and repair of the different types of ships and structures in order to respond to the commercial activities that make up this industry

    Sustainability in the Aerospace, Naval, and Automotive Supply Chain 4.0: Descriptive Review

    Get PDF
    The search for sustainability in the Supply Chain (SC) is one of the tasks that most concerns business leaders in all manufacturing sectors because of the importance that the Supply Chain has as a transversal tool and due to the leading role that it has been playing lately. Of all the manufacturing sectors, this study focuses on the aerospace, shipbuilding, and automotive sectors identified as transport. The present study carries out a descriptive review of existing publications in these three sectors in relation to the sustainability of the Supply Chain in its 4.0 adaptation as an update in matters that are in constant evolution. Among the results obtained, Lean practices are common to the three sectors, as well as different technologies focused on sustainability. Furthermore, the results show that the automotive sector is the one that makes the greatest contribution in this sense through collaborative programs that can be very useful to the other two sectors, thus benefiting from the consequent applicable advantages. Meanwhile, the Aerospace and Shipbuilding sectors do not seem to be working on promoting a sustainable culture in the management of the Supply Chain or on including training programs for their personnel in matters related to Industry 4.0

    Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review

    Get PDF
    The supply chain is currently taking on a very important role in organizations seeking to improve the competitiveness and profitability of the company. Its transversal character mainly places it in an unbeatable position to achieve this role. This article, through a study of each of the key enabling technologies of Industry 4.0, aims to obtain a general overview of the current state of the art in shipbuilding adapted to these technologies. To do so, a systematic review of what the scientific community says is carried out, dividing each of the technologies into different categories. In addition, the global vision of countries interested in each of the enabling technologies is also studied. Both studies present a general vision to the companies of the concerns of the scientific community, thus encouraging research on the subject that is focused on the sustainability of the shipbuilding supply chain

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Sustainability in the Aerospace, Naval, and Automotive Supply Chain 4.0: Descriptive Review

    No full text
    The search for sustainability in the Supply Chain (SC) is one of the tasks that most concerns business leaders in all manufacturing sectors because of the importance that the Supply Chain has as a transversal tool and due to the leading role that it has been playing lately. Of all the manufacturing sectors, this study focuses on the aerospace, shipbuilding, and automotive sectors identified as transport. The present study carries out a descriptive review of existing publications in these three sectors in relation to the sustainability of the Supply Chain in its 4.0 adaptation as an update in matters that are in constant evolution. Among the results obtained, Lean practices are common to the three sectors, as well as different technologies focused on sustainability. Furthermore, the results show that the automotive sector is the one that makes the greatest contribution in this sense through collaborative programs that can be very useful to the other two sectors, thus benefiting from the consequent applicable advantages. Meanwhile, the Aerospace and Shipbuilding sectors do not seem to be working on promoting a sustainable culture in the management of the Supply Chain or on including training programs for their personnel in matters related to Industry 4.0

    Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications

    No full text
    With the increasing adoption of Additive Manufacturing in the industry, driven by its efficiency, productivity, and project profitability, materials have undergone significant evolution to enhance process performance and part properties. One of the processes employed to enhance these properties involves the incorporation of various types of reinforcements. This aims to ensure that the material acquires a proportion of the properties of the added reinforcement. Consequently, the options for material selection expand depending on the application. Hence, there is a need to understand how specific reinforcements modify the properties of these materials. For this reason, this study investigates the modification of mechanical properties in a PETG matrix through the incorporation of short carbon fiber (CF) reinforcements, driven by their industrial relevance. To achieve this, the Fused Filament Fabrication (FFF) process will be utilized to produce a series of standardized specimens made of both PETG and CF-reinforced PETG, with variations in layer height and extrusion temperature. Subsequently, these specimens will undergo mechanical evaluation in tension and compression, following the relevant standards for each case. Finally, distinctions between both materials will be analyzed, based on the data obtained from tensile and compression tests. The incorporation of carbon fiber reinforcement shows a detrimental effect, leading to a decrease in the material’s stress (39.23 N/mm2 vs. 48.41 N/mm2 for the conventional material). As expected, due to the nature of the reinforcement (short fibers), the deformation of the material also decreases (2.13% compared to 2.9%)
    corecore